ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
Evgueny P. Shabalin
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 280-288
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34712
Articles are hosted by Taylor and Francis Online.
Physicists dealing with conventional reactor dynamics recognize two types of instability and reactor behavior beyond the stability region: asymptotic excur sions and nonlinear periodic oscillations. A periodically pulsed reactor (PPR) has another peculiar instability: Under certain conditions, its power tends to oscillate at a frequency just twice less than the reactor pulsation frequency. The PPR dynamics far beyond the stability region are analyzed by using a discrete nonlinear model. A PPR with a negative temperature reactivity effect inevitably shows the chaotic power pulse energy behavior known as “deterministic chaos.” The way by which a reactor goes to chaos is defined by the time de pendence of the feedback and by the kind of dynamics model used. The most usual case is a Feigenbaum transition in which the PPR passes through an infinite cascade of oscillation period doubling before chaotic motion appears. The transition of PPR to random behavior through the Feigenbaum scenario must be considered to be “safe.”