ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Joan-Carles Casas, Michael L. Corradini
Nuclear Technology | Volume 99 | Number 1 | July 1992 | Pages 104-119
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34707
Articles are hosted by Taylor and Francis Online.
Investigations are performed to study the mixing between immiscible liquids in a pool configuration due to an upward gas flow. A water-R113 system is used in the bubbly/churn-turbulent regimes to determine the effects of the unagitated pool depth on layer mixing. The superficial gas velocity at which full mixing is attained is observed to increase with the pool depth, although it is concluded that this is a weak dependency. Mixing in the churn-turbulent regime is studied with Wood’s metal-water and Wood’s metal-silicone fluid (100 cS) as pairs of fluids. Additional past mixing data from six other fluids are also included in the data base. A criterion is proposed to determine if two liquids will entrain in bubbly or churn-turbulent flow. Correlations are derived that, for a set of given conditions, allow prediction of the mixing state (mixed or segregated) of a system. Because of the indirect method of measuring the mixed layer thickness, pool void fraction experiments are also performed. For the case of water and R113, the effect of unagitated pool depth on the void fraction is studied. The drift flux two-phase flow model is used for the analysis of the void fraction experiments, and correlations are proposed to predict the void fraction for both the bubbly and churn-turbulent flow regimes. These correlations take into account the physical properties of the liquid, the unagitated pool depth, and the superficial gas velocity. After comparison with independent data, it is concluded that they are suitable for molten core/concrete interaction modeling in the absence of solid crusts.