ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tsutomu Sakurai, Akira Takahashi, Niroh Ishikawa, Yoshihide Komaki, Mamoru Ohnuki, Takeo Adachi
Nuclear Technology | Volume 99 | Number 1 | July 1992 | Pages 70-79
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT92-A34704
Articles are hosted by Taylor and Francis Online.
Spent-fuel specimens (∼3 g each) with a burnup of 21 to 39 GWd/t were dissolved in 30 ml of 4 M HNO3 at 100°C, and the distribution of iodine and its chemical forms in the solution were studied. A small quantity of the iodine was conveyed to the insoluble residue (up to 2.3%), some remained in the fuel solution (up to 9.7%), and the balance was in the off-gas. Iodine was not deposited on the fuel cladding. Organic iodides were only ∼6.5% or less of the total amount of iodine in the off-gas. The fuel solution included iodine species that were difficult to expel by NO2 sparging alone (27 to 46% of the iodine in the solution). These species were ascribed to be the colloids of AgI and Pdl2. Io-date () was a rather minor iodine species in dissolution in ∼4 M HNO3. A thermochemical calculation also supports these results, indicating that the quantity of is ≦ 1.7 × 10−4% of the iodine fed to 4 M HNO3 and that the colloid of Agl can be formed when the concentration of I- is ≧ 5.3 × 10−10 M. For this calculation, the solubilities of Agl and PdI2 in water were measured: They are 6.5 × 10−8 and 6.3 × 10−7 M, respectively, at 90°C. According to supplemental experiments using a simulated spent-fuel solution and 1311, NOx sparging, previously proposed by earlier workers for expulsion of from the fuel solution, retards the rate of decomposition of the colloid. The thermochemical calculation indicates this is because the equilibrium concentration of I- in 3 M HNO3 is increased two orders of magnitude (1.7 × 102 times) by sparging with 10% NO2. The NO2 sparging brings the concentration of I- close to the solubility of Agl and suppresses the decomposition of its colloid into I2. Heating the solution without NO2 sparging was effective for the decomposition of the colloid, and the addition of excess amounts of accelerates its rate of decomposition.