ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Zhichao Guo, Robert E. Uhrig
Nuclear Technology | Volume 99 | Number 1 | July 1992 | Pages 36-42
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34701
Articles are hosted by Taylor and Francis Online.
A hybrid artificial neural network is used to model the thermodynamic behavior of the Tennessee Valley Authority’s Sequoyah nuclear power plant using data for heat rate measurements acquired over a 1-yr period. The modeling process involves the use of a selforganizing network to rearrange the original data into several classes by clustering. Then, the centroids of these clusters are used as the training patterns for an artificial neural network that utilizes backpropagation training to adjust the weights on the connections between artificial neurons. This procedure greatly reduces the training time and reduces the system error. Comparison of the calculated heat rates with those predicted by the artificial neural network gives an error of <0.1%. A sensitivity analysis is then performed by taking the partial derivative of the heat rate with respect to each individual input to secure a sensitivity coefficient. These coefficients identified the input variables that were most important to improving the heat rate and efficiency. The methodology reported is an alternative to the conventional modeling procedures used in other heat rate monitoring systems. It has the advantage that the artificial neural network model is based on actual plant data that cover the dynamic range normally occurring over an annual cycle of operation, and it is not subject to linearization or empirical approximations. This process could be utilized by existing heat rate monitoring systems.