ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sang Yong Lee, Jae Jun Jeong, Si-Hwan Kim, Soon Heung Chang
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 177-187
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT99-177
Articles are hosted by Taylor and Francis Online.
The best-estimate thermal-hydraulic codes RE-LAP5/MOD3 and COBRA-TF were adopted to the Apollo DN 10000 workstation and subsequently merged. This was done to combine the excellent features of the two codes and thus produce a code with much enhanced capability. The resulting code was named COBRA /RELAPS. This code has features in common with COBRA/TRAC or TRAC-PF1: three-dimensional reactor vessel and one-dimensional loop modeling capability. The merging of the two codes is focused on the hydrodynamic model and numerical solution schemes. In COBRA/RELAP5, the system pressure matrices of the two codes are merged and solved simultaneously. The merged COBRA/RELAP5 calculations are done in process-level parallel mode on the Apollo DN10000 computer with two central processing units. Through various test simulations, the merging scheme and its implementation were proven to be valid. Thus, the code predictability is presumed eventually to depend on the generic capabilities of COBRA-TF and RELAP5/MOD3. However, to evaluate the overall code capability of COBRA /RELAP5, a systematic assessment should be done, including multidimensional effect tests.