ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Gee Yong Park, Jinho Park, Poong Hyun Seong
Nuclear Technology | Volume 145 | Number 2 | February 2004 | Pages 177-188
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3468
Articles are hosted by Taylor and Francis Online.
Information on the steam and feedwater flow rates in the secondary loop of nuclear power plants is valuable for thermal efficiency estimation and the related controllers in nuclear power plants. However, the high level of noise in measuring flow rates detracts from the usefulness of this information and forces the operator to exclude the values of the steam and feedwater flow rates when controlling the water level of a steam generator at low operating powers. In recent years, it has been proposed that the wavelet transform can reconstruct a signal that approximates very closely the original signal under a high level of noise. A possible way of differentiating the flow rate from noise is proposed by use of the wavelet noise-reduction or denoising technique and, as one of the potential applications for nuclear power plants, the wavelet transform is incorporated into the water-level controller of steam generators for successful control at low operating powers.