In pressurized heavy water nuclear reactors of the type standardly used in Canada (Canada deuterium uranium-pressurized heavy water reactors), the zirconium alloy pressure tubes of the core absorb deuterium produced by corrosion reactions. This deuterium weakens the tubes through hydrogen embrittlement. Thin palladium coatings on the outside of the zirconium are analyzed as a method for deuterium removal. This coating is expected to catalyze the reaction D2 + ½O2 ⇄D2O when O2 is added to the annular (insulating) gas in the tubes. Major reductions in the deuterium concentration and, hence, hydrogen embrittlement are predicted. Potential problems such as plating the tube geometry, neutron absorption, catalyst deactivation, radioactive waste production, and oxygen corrosion are shown to be manageable. Also, a simple set of equations are derived to calculate the effect on diffusion caused by neutron interactions. Based on calculations of ordinary and neutron flux-induced diffusion, a palladium coating of 1 × 10-6 m is recommended. This would cost approximately $60 000 per reactor unit and should more than double reactor lifetime. Similar coatings and similar interdiffusion calculations might have broad applications.