ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yacine Aounallah
Nuclear Technology | Volume 145 | Number 2 | February 2004 | Pages 163-176
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3467
Articles are hosted by Taylor and Francis Online.
CORETRAN-01 is the Electric Power Research Institute core analysis computer program that couples the neutronic code ARROTTA to the thermal-hydraulic code VIPRE-02 to achieve an integrated three-dimensional representation of the core for both steady-state and transient applications. The thermal-hydraulic module VIPRE-02, the two-fluid version of the one-fluid code VIPRE-01, has been the object of relatively few assessment studies, and the work presented seeks to reduce this lacuna. The priority has been given to the assessment of the void fraction prediction due to the importance of the void feedback on the core power generation. The assessment data are experimental void fractions obtained from X- and gamma-ray attenuation techniques applied at assembly-averaged as well as subchannel level for both steady-state and transient conditions. These experiments are part of the NUPEC (Japan) program where full-scale boiling water reactor (BWR) assemblies of different types, including assemblies with part-length rods, and pressurized water reactor subassemblies were tested at nominal reactor operating conditions, as well as for a range of flow rates and pressures. Generally, the code performance ranged from adequate to good, except for configurations exhibiting a strong gradient in power-to-flow ratio. Critical power predictions have also been assessed and code limitations identified, based on measurements on full-scale BWR 8 × 8 and high-burnup assemblies operated over a range of thermal-hydraulic conditions.