ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Wen-Shan Lin, Bau-Shei Pei, Chien-Hsiung Lee
Nuclear Technology | Volume 98 | Number 3 | June 1992 | Pages 354-365
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34665
Articles are hosted by Taylor and Francis Online.
A new approach to bundle critical power predictions is presented. In addition to a very accurate critical heat flux (CHF) model, correction factors that account for the effects of grid spacers, heat flux nonuniformities, and cold walls, which are needed for critical power predictions for practical fuel bundles, are developed. By using the subchannel analysis code COBRA IIIC/MIT-1, local flow conditions needed as input to CHF correlations are obtained. Critical power is therefore obtained iteratively to ensure that the bundle power value from the subchannel analysis will cause CHF at only one point in the bundle. Good agreement with the experimental data is obtained. The accuracy is higher than that of the W-3 and EPRI-1 correlations for the limited data base used in this study. The effects of three types of fuel abnormalities, namely, local heat flux spikes, local flow blockages, and rod bowing, on bundle critical power are also analyzed. The local heat flux spikes and flow blockages have no significant influence on critical power. However, rod bowing phenomena have some effect, the severity of which depends on system pressure, the gap closure between adjacent rods, and the presence or absence of thimble tubes (cold walls). A correlation for the influence of various rod bowing phenomena on bundle critical power is developed. Good agreement with experimental data is shown.