ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Wen-Shan Lin, Bau-Shei Pei, Chien-Hsiung Lee
Nuclear Technology | Volume 98 | Number 3 | June 1992 | Pages 354-365
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34665
Articles are hosted by Taylor and Francis Online.
A new approach to bundle critical power predictions is presented. In addition to a very accurate critical heat flux (CHF) model, correction factors that account for the effects of grid spacers, heat flux nonuniformities, and cold walls, which are needed for critical power predictions for practical fuel bundles, are developed. By using the subchannel analysis code COBRA IIIC/MIT-1, local flow conditions needed as input to CHF correlations are obtained. Critical power is therefore obtained iteratively to ensure that the bundle power value from the subchannel analysis will cause CHF at only one point in the bundle. Good agreement with the experimental data is obtained. The accuracy is higher than that of the W-3 and EPRI-1 correlations for the limited data base used in this study. The effects of three types of fuel abnormalities, namely, local heat flux spikes, local flow blockages, and rod bowing, on bundle critical power are also analyzed. The local heat flux spikes and flow blockages have no significant influence on critical power. However, rod bowing phenomena have some effect, the severity of which depends on system pressure, the gap closure between adjacent rods, and the presence or absence of thimble tubes (cold walls). A correlation for the influence of various rod bowing phenomena on bundle critical power is developed. Good agreement with experimental data is shown.