ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Efigenio Cubillos-Moreno, Mohamed Belhadj, Tunc Aldemir
Nuclear Technology | Volume 98 | Number 3 | June 1992 | Pages 333-348
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34663
Articles are hosted by Taylor and Francis Online.
The heat flux that leads to onset of nucleate boiling qONB is an important quantity for plate-type research reactors since it is frequently used as a thermal design constraint and also indicates the transition point from single- to two-phase heat removal in transient analyses. Recent experimental work has shown that qONB can be sensitive to both channel gap size d and flow velocity v under laminar, upward flow conditions that are encountered in such reactors under naturalconvection core cooling. New experimental data are presented to test the validity of the correlation proposed from the results of the previous work in extended d and local pressure p ranges. The correlation predicts the new experimental data for mixed or pure buoyancy-driven upward flows in 2.0 ≤ d ≤ 5.0 mm channels with 0.03 ≤ v ≤ 0.16 m/s and 1.05 × 105 ≤ p ≤ 1.70 × 105 Pa within 25%. The new d range covers almost all the existing and planned plate-type research reactors. The p range extends the applicability of the correlation to the analysis of a number of accident scenarios in open-pool reactors with power levels up to 5 to 10 MW, such as partial loss of pool water or coolant pump trip. The pressure range is also relevant to the analysis of similar accidents in higher power pressurized systems if the accident is accompanied by system depressurization. In the implementation of the correlation for such analyses, it is important to note that the correlation implicitly assumes that the wall superheat is nonnegative.