ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Efigenio Cubillos-Moreno, Mohamed Belhadj, Tunc Aldemir
Nuclear Technology | Volume 98 | Number 3 | June 1992 | Pages 333-348
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34663
Articles are hosted by Taylor and Francis Online.
The heat flux that leads to onset of nucleate boiling qONB is an important quantity for plate-type research reactors since it is frequently used as a thermal design constraint and also indicates the transition point from single- to two-phase heat removal in transient analyses. Recent experimental work has shown that qONB can be sensitive to both channel gap size d and flow velocity v under laminar, upward flow conditions that are encountered in such reactors under naturalconvection core cooling. New experimental data are presented to test the validity of the correlation proposed from the results of the previous work in extended d and local pressure p ranges. The correlation predicts the new experimental data for mixed or pure buoyancy-driven upward flows in 2.0 ≤ d ≤ 5.0 mm channels with 0.03 ≤ v ≤ 0.16 m/s and 1.05 × 105 ≤ p ≤ 1.70 × 105 Pa within 25%. The new d range covers almost all the existing and planned plate-type research reactors. The p range extends the applicability of the correlation to the analysis of a number of accident scenarios in open-pool reactors with power levels up to 5 to 10 MW, such as partial loss of pool water or coolant pump trip. The pressure range is also relevant to the analysis of similar accidents in higher power pressurized systems if the accident is accompanied by system depressurization. In the implementation of the correlation for such analyses, it is important to note that the correlation implicitly assumes that the wall superheat is nonnegative.