ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Gilberto Espinosa-Paredes, Jose Alvarez-Ramirez, Alejandro Nuñez-Carrera, Alfonso Garcia-Gutierrez, Elizabeth Jeannette Martinez-Mendez
Nuclear Technology | Volume 145 | Number 2 | February 2004 | Pages 150-162
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3466
Articles are hosted by Taylor and Francis Online.
A comparative analysis of the dynamic behavior of a boiling water reactor in a full-scope power plant simulator for operator training is presented. Three- and four-equation reactor core models were used to examine three transients following tests described in acceptance test procedures: scram, loss of feedwater flow, and closure of main isolation valves. The three-equation model consists of water and steam mixture momentum, including mass and energy balances. The four-equation model is based on liquid and gas phase mass balances, together with a drift-flux approach for the analysis of phase separation. Analysis of the models showed that the scram transient was slightly different for three- and four-equation models. The drift-flux effects can explain such differences. Regarding the loss-of-feedwater transient, the predicted steam flow after scram is larger for the three-equation model. Finally, for the transient related to the closure of main steam isolation valves, the three-equation model provides slightly different results for the pressure change, which affects reactor level behavior.