ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. N. Jahshan
Nuclear Technology | Volume 98 | Number 3 | June 1992 | Pages 257-276
Technical Paper | Fission Reactor | doi.org/10.13182/NT92-A34658
Articles are hosted by Taylor and Francis Online.
Cermet fuel elements, when integrated in a cylindrical core along with reflectors and safety and control components, constitute a very rugged reactor assembly capable of delivering hundreds of megawatts of power at power densities of several gigawatts per cubic metre (several megawatts per litre). The cermet fuel is a ceramic uranium oxide or uranium nitride fuel in a refractory metal matrix fuel element. The fuel element is hexagonal with a flat-to-flat dimension of 20 to 30 mm. Coolant channels of ∼l-mm diam are bored along the hexagonal fuel element. A typical cylindrical active core would have a volume of ∼6 × 10−2 m3 (420 mm in height and diameter) with the core, reflectors, control and safety elements, core support, vessel, and reentry shield cone under 2000 kg. Depending on the particular choice of materials and desired performance characteristics, this reactor can operate at an exit temperature of up to 2700 K. The broad applications of this reactor type include steady-state space platform or lunar base power sources, burst power sources—hundreds of megawatts(thermal) power on demand within 100 s for periods of minutes, and other applications. This reactor type offers easy operational control and meets all the safety requirements for launch and reentry. Land-based development and testing can be performed easily because this fuel type has a high fission product and fissile material retention capability. This reactor concept has been developed considerably in the past few decades. The physics design of the cermet fuel reactor is performed utilizing modern computers and computer codes. This design also incorporates developments in metallurgy and fuel performance, as well as new requirements in safety and performance that have been realized since the late 1960s when this concept was first pursued. The basic fuel element is upgraded and integrated in the overall core and reactor subsystem. Two specific applications are illustrated in detail, and expansion to other applications is outlined.