ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Kenny C. Gross, Robert V. Strain
Nuclear Technology | Volume 98 | Number 1 | April 1992 | Pages 113-123
Technical Paper | Fast Reactor Safety / Nuclear Fuel Cycle | doi.org/10.13182/NT92-A34655
Articles are hosted by Taylor and Francis Online.
A bifrequency reactivity oscillation procedure (ROP) was devised at the Experimental Breeder Reactor II (EBR-II) to be used as a diagnostic tool for characterizating mechanisms responsible for the release and transport of short-lived fission products from the surface of exposed fuel. A series of ROP experiments was conducted during operation at 74% of full power with a breached fuel pin in the core. Detailed analyses of the results using bivariate spectral decomposition and cross-correlation techniques are presented. Comparison of the results of these experiments with those obtained from earlier tests with an unclad fuel source provides conclusive evidence that all nonrecoil fission product release phenomena originate from mechanisms acting inside the breached element itself. Implications of the findings from this study in terms of the goals of high-sensitivity fission product surveillance are discussed.