ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Daniel Magallon, Hermann Hohmann, Hubert Schins
Nuclear Technology | Volume 98 | Number 1 | April 1992 | Pages 79-90
Technical Paper | Fast Reactor Safety / Nuclear Reactor Safety | doi.org/10.13182/NT92-A34652
Articles are hosted by Taylor and Francis Online.
Two experiments known as Tl and T2 are performed in the test section TERMOS of the FARO facility. Quantities of the order of 100 kg of molten pure UO2 ∼3000°C are poured into 130 kg of sodium at 400°C and 0.1 MPa contained in a 0.28-m-diam test tube over a height of 2.5 m. The tests show a melt delivery rate twice as high in T2 as in Tl. Because of the large scale of the experiment, the tests reveal new features concerning this type of interaction. Particularly, fuel/coolant interaction (FCI) occurs that induces stepwise penetration and dispersion of the melt, and a limitation of the melt quantity that could penetrate into the sodium. Sodium pressure peaks up to 6.0 MPa and pressurizations of the 0.150-m3 gas phase blanket up to 0.8 MPa are recorded. These FCIs are interpreted as vapor explosions in nearly saturated sodium. Quantities of 60 kg for Tl and 45 kg for T2 of UO2 fragments are collected in the debris catcher located at the bottom of the test tube. A debris bed structure resulting from this type of interaction is identified and characterized. Porosity is almost constant all over the bed height while permeability increases by a factor of 30 when going from the top to the bottom of the bed.