ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Werner Maschek, Claus Dieter Munz, Leonhard Meyer
Nuclear Technology | Volume 98 | Number 1 | April 1992 | Pages 27-43
Technical Paper | Fast Reactor Safety / Nuclear Reactor Safety | doi.org/10.13182/NT92-A34648
Articles are hosted by Taylor and Francis Online.
Analyses of unprotected loss-of-flow accidents for medium-size cores of current liquid-metal fast breeder reactors have shown that the accident proceeds into a transition phase where further meltdown is accompanied by recriticalities and secondary excursions. Assuming very pessimistic conditions concerning fuel discharge and blockage formation, a neutronically active whole-core pool of molten material can form. Neutronic or thermohydraulic disturbances may initiate a special motion pattern in these pools, called centralized sloshing, which can lead to energetic power excursions. If such a whole-core pool is formed, its energetic potential must be adequately assessed. This requires sufficiently correct theoretical tools (codes) and proper consideration of the fluid-dynamic and thermohydraulic conditions of these pools. A series of experiments has been performed that serves as a benchmark for the SIMMER-II and the AFDM codes in assessing their adequacy in modeling such sloshing motions. Additional phenomenologically oriented experiments provide deeper insight into general motion patterns of sloshing fluids while taking special notice of asymmetries and obstacles that exist in such pools.