ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Sung Sik Kang, In Sup Kim
Nuclear Technology | Volume 97 | Number 3 | March 1992 | Pages 336-343
Technical Paper | Material | doi.org/10.13182/NT92-A34641
Articles are hosted by Taylor and Francis Online.
The effect of dynamic strain aging (DSA) on fracture is investigated on the quenched and tempered specimens of American Society of Mechanical Engineers (ASME) standard SA508 class 3 nuclear pressure vessel steel. Serrated flow by DSA is observed between 180 and 340°C at a tensile strain rate of 2.08 × 10−4/s and 1.25 × 10−3/s. The DSA causes a sharp rise in the ultimate tensile strength and a marked decrease in ductility. The DSA range shifts to higher temperatures with increased strain rates. The temperature and strain rate dependence of the onset of serrations yields an activation energy of 16.2 kcal/mol, which suggests that the process is controlled by interstitial diffusion of carbon and nitrogen in ferrite. The Ji value obtained from the direct current potential drop (DCPD) method, for true crack initiation, is lowered by DSA. The drop in Ji at elevated temperatures may be because of the interaction of the interstitial impurities with dislocations at the crack front. Compared with JIC from American Society for Testing and Materials (ASTM) standard E813, the Ji by DCPD is a better parameter to use to detect the DSA effect on fracture toughness. Crack propagation is also affected in terms of the tearing modulus. The tearing modulus in dynamic strain aging is ∼30% smaller than that at room temperature.