ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Toshiharu Muramatsu, Hisashi Ninokata
Nuclear Technology | Volume 97 | Number 2 | February 1992 | Pages 186-197
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34615
Articles are hosted by Taylor and Francis Online.
A three-dimensional in-vessel thermohydraulics analysis is carried out for the early phase of an unprotected transient overpower (UTOP) accident and delayed neutron precursor concentration transport in a typical loop-type fast breeder reactor plant. In the UTOP calculations, the time at which the sodium temperature reaches the reactor trip level is evaluated based on calculated upper plenum flow and temperature distributions. For fission product release from the core assemblies, the delayed neutron precursor concentration in the sodium that reaches the detectors depends on the location of the faulted assembly, threedimensional flow patterns, and hence, the residence time in the upper plenum. Delayed neutron precursors that bypassed the recirculation flow to appear in the plenum primarily contribute to the peak concentration.