ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Hideaki Asaka, Yutaka Kukita, Taisuke Yonomoto, Kanji Tasaka
Nuclear Technology | Volume 96 | Number 2 | November 1991 | Pages 202-214
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A34606
Articles are hosted by Taylor and Francis Online.
Three 0.5% hot-leg small-break loss-of-coolant accident experiments are conducted at the ROSA-IV Large-Scale Test Facility (LSTF), a volumetrically scaled full-height model of a pressurized water reactor. Three experiments simulate breaks located at the side, bottom, and top of the horizontal hot-leg piping to investigate the effects of break orientation on system thermal-hydraulic responses. Although the overall system responses in the three experiments are qualitatively the same, the break flow rate is affected significantly by the break orientation for most of the time preceding the initiation of core uncovering: The break flow rate is largest for the bottom break and smallest for the top break. The RELAP5/MOD2 code fails to predict the differences in break flow rate observed in the experiments. However, several modifications, based on separate-effect experiments, made particularly to the break flow calculation models enable this code to simulate the experimental results well.