ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Rainer Köster, Günter Rudolph
Nuclear Technology | Volume 96 | Number 2 | November 1991 | Pages 192-201
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34605
Articles are hosted by Taylor and Francis Online.
The release of radionuclides from a waste form into an aqueous phase is often assessed using a source term that considers diffusion and/or congruent matrix dissolution as the rate-determining release mechanisms. As an alternative approach, an equilibrium concept is proposed here that can be applied under the condition that there is no appreciable exchange of fluid with the environment of the waste package / form after the water inflow into the near field for a long time. In this case, all reactions that may give rise to radionuclide release will be completed after a certain time and stable final conditions will be established, in which, for each radionuclide, chemical equilibria exist between the dissolved phase and the various coexisting solid phases. Thereafter, a release of radionuclides from the near field is possible only by escape of the aqueous phase into the environment. Release rate predictions on the basis of this concept are of particular interest for the long-lived radionuclides, especially the actinides. Current efforts are aimed at predicting equilibrium concentrations both in theoretical computations and in experimental measurements. Some results available from corrosion studies on cemented waste forms in salt brine are presented. For specimens doped with cesium, strontium, plutonium, or americium these results show that for each radionuclide a partition equilibrium exists between the corrosion products of cement and the surrounding salt brine, which keeps the concentration in solution at a low level.