ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Kyoung-Ho Kang, Rae-Joon Park, Jong-Tae Kim, Byung-Tae Min, Ki-Young Lee, Sang-Baik Kim
Nuclear Technology | Volume 145 | Number 1 | January 2004 | Pages 57-66
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3460
Articles are hosted by Taylor and Francis Online.
Experimental and analytical studies on the thermal behavior of reactor vessel penetration have been performed under external vessel cooling during a severe accident in the Korean next-generation reactor APR1400. Two types of tests, SUS-EXT and SUS-DRY with and without external vessel cooling, respectively, have been performed using sustained heating by an induction heater. Three tests have been carried out varying the cooling conditions at the vessel outer surface in the SUS-EXT tests. The experimental results have been thermally estimated using the LILAC computer code. The experimental results indicate that the inner surface of the vessel was ablated by the 45-mm thickness in the SUS-DRY test. Despite the total ablation of the welding material, the penetration was not ejected outside the vessel, which could be attributed to the thermal expansion of the penetration. Unlike the SUS-DRY test, the thickness of the ablation was ~15 to 20 mm at most, so the welding was preserved in the SUS-EXT tests. It is concluded from the experimental results that the external vessel cooling highly affected the ablation configuration and the thermal behaviors of the vessel and the penetration. An increase in coolant mass flow rate from 0.047 to 0.152 kg/s had effects on the thermal behavior of the lower head vessel and penetration in the SUS-EXT tests. The LILAC analytical results on temperature distribution and ablation depth in the lower head vessel and penetration were very similar to the experimental results.