ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
S. E. Soliman, D. L. Youchison, A. J. Baratta, T. A. Balliett
Nuclear Technology | Volume 96 | Number 3 | December 1991 | Pages 346-352
Technical Paper | Material | doi.org/10.13182/NT91-A34595
Articles are hosted by Taylor and Francis Online.
Neutron effects on the mechanical properties and the microstructures of borated stainless steel are studied by irradiating three borated stainless steel batches to different radiation levels (from 1 × 1013 to 1 × 1017 n/cm2). Each batch includes samples varying in boron content from 0.25 to 2.01 wt° and manufactured by two different processes: a powder metallurgical and a conventional wrought technique, which meet the requirements of American Society of Testing and Materials Standard A-887 grades A and B, respectively. A total of 50 tensile specimens, 81 Charpy V-notch samples, and 17 metallographic specimens are used for this purpose. In general, the mechanical properties of samples manufactured by both the powder metallurgy and the wrought techniques show almost no change in mechanical properties with fluence. In addition, no evidence of helium effects are observed during the investigation. Further studies on helium formation in this material during irradiation are ongoing.