ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Heinrich R. Obermoller, David A. White
Nuclear Technology | Volume 96 | Number 3 | December 1991 | Pages 337-345
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT91-A34594
Articles are hosted by Taylor and Francis Online.
A simple model based on a stage concept that can be used to predict the effects of operating variables on the separation of isotopes by chemical exchange is described. The particular application studied is chemical exchange of uranium isotopes in an ion exchange column that has NT total theoretical stages. Other important operating parameters are the number of stages in the exchange band Ns and the chemical exchange equilibrium constant ∈. A model of the process is developed and simulated by a computer program. The results are correlated to give simple expressions based on the assumption that one-half of the band that emerges from the column is taken as enriched feed with a concentration y. For small values of ∈, the optimum value of Ns is given by 1.313 and y = x0(1 + 0.551∈), where x0 is the feed concentration.