ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kazunori Sasaki, Hiroo Kanamaru, Mitsuo Tanaka
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 349-365
Technical Paper | Reactor Operation | doi.org/10.13182/NT91-A34583
Articles are hosted by Taylor and Francis Online.
A parallelism analysis integrated system (PARIS) with a multiple instruction stream-multiple data stream (MIMD) scheme has been developed to analyze simulation programs and generate a parallel execution program for parallel processing. This simulation program can predict effects of anomalies in nuclear plants. The PARIS system first analyzes task parallelism and the processing time of each task after a user divides a program developed for a single processor into many elementary assignment units. The system then assigns tasks to processors using the critical path/most immediate successor first scheduling algorithm to minimize the overall processing time, and it generates the parallel execution program, which can be executed with a tightly coupled multiprocessor. The PARIS system has two scheduling methods so it can assign tasks to the multiprocessor both before and during execution of the program. Thus, optimum task scheduling is accomplished even when the processing time of each task changes according to accident analyses. The PARIS system is assessed using a nuclear power plant analyzer code (NUPAC-1) that includes reactor coolant system and steam generator models. The results show that the NUPAC-1 processing time with 7 processors is 3.5 times as fast as with a single processor. The fast-running capability is 5.4 times as fast as real time in steady-state and transient analyses and 4.0 times as fast in accident analyses. Furthermore, the results show that the PARIS system can be adapted to realize a predictive simulator using the NUPAC-1 code with few nodes.