ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Kazunori Sasaki, Hiroo Kanamaru, Mitsuo Tanaka
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 349-365
Technical Paper | Reactor Operation | doi.org/10.13182/NT91-A34583
Articles are hosted by Taylor and Francis Online.
A parallelism analysis integrated system (PARIS) with a multiple instruction stream-multiple data stream (MIMD) scheme has been developed to analyze simulation programs and generate a parallel execution program for parallel processing. This simulation program can predict effects of anomalies in nuclear plants. The PARIS system first analyzes task parallelism and the processing time of each task after a user divides a program developed for a single processor into many elementary assignment units. The system then assigns tasks to processors using the critical path/most immediate successor first scheduling algorithm to minimize the overall processing time, and it generates the parallel execution program, which can be executed with a tightly coupled multiprocessor. The PARIS system has two scheduling methods so it can assign tasks to the multiprocessor both before and during execution of the program. Thus, optimum task scheduling is accomplished even when the processing time of each task changes according to accident analyses. The PARIS system is assessed using a nuclear power plant analyzer code (NUPAC-1) that includes reactor coolant system and steam generator models. The results show that the NUPAC-1 processing time with 7 processors is 3.5 times as fast as with a single processor. The fast-running capability is 5.4 times as fast as real time in steady-state and transient analyses and 4.0 times as fast in accident analyses. Furthermore, the results show that the PARIS system can be adapted to realize a predictive simulator using the NUPAC-1 code with few nodes.