ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hugues W. Bonin, Christopher J. Thorp
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 337-348
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT91-A34582
Articles are hosted by Taylor and Francis Online.
A portable neutron gauge is designed to detect water ingression in flat roofs and to measure with good accuracy the moisture content in the roofing materials. The gauge consists of a small 252Cf neutron source inserted in a collimator head made of borated paraffin contained in a steel vessel. Neutron detection is performed with a boron trifluoride detector and the associated electronic counting equipment. Experimental testing, calibration, and assessment are done in the laboratory using full-scale models of typical, Canadian-built flat roofs. Several experiments are conducted to determine the sensitivity of the gauge for various controlled water densities in the roofing insulation materials and for a large selection of geometries for the source and the detector with respect to the roof surface. Two different source strengths are used: 1.2 (0.5) and 4.8 MBq (2.0 µg). The results indicate that as little as 2% (volume) water can be detected and that the water content can be determined with an average accuracy of 2.5%, even with the smaller of the two sources. A small neutron gauge can indeed be designed for roofing surveys, and only a few straightforward modifications are necessary to make the gauge used in the laboratory into an apparatus that can withstand the rigors of field usage.