ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Gunji Nisio, Motoe Suzuki, Shigeo Mukaide, Junichi Takada, Michio Tsukamoto, Tadao Koike
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 325-336
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT91-A34581
Articles are hosted by Taylor and Francis Online.
A nuclear fuel reprocessing plant is equipped with an air ventilation system consisting of cells, ducts, dampers, high-efficiency particulate air filters, and blowers. This ventilation system is required to have multiple safeguards in order to confine airborne radioactive materials within the plant in the event of fire, explosion, and criticality. To evaluate these safeguards, three kinds of explosive burning tests are performed using a large-scale facility simulating the ventilation system of a reprocessing plant. In the boilover test, an organic solvent is burned on a layer of water in a burning pan to determine the magnitude of the burning caused by the sudden boiling of the water under the solvent. The optimum conditions for boilover burning are determined by the relationship between the pan size and the ventilation rate. In the deflagration tests, to investigate the mitigating effects of the cell and duct structures in the ventilation system, rocket fuel is burned in the test cell to generate a transient gas overload. A decrease is observed in the pressure, temperature, and flow rate peaks of the gas in the facility. To confirm the integrity of the blower and the durability of the ventilation system motor, a blower test is performed. Pressurized air accumulated in a tank is forced into the blower, and the response of the blower is measured.