ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Woan Hwang, Ho Chun Suk, Won Mok Jae
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 314-324
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A34580
Articles are hosted by Taylor and Francis Online.
A comprehensive fission gas release model is developed by considering the behavior of multiple bubble sizes on the fuel grain boundary in terms of relevant physical parameters. This model takes into account bubble migration and coalescence; critical bubble size, which depends on the thermal gradient on the grain boundary; and the lenticular shape of the bubbles. Booth’s classical diffusion theory is directly adopted in the modeling of intragranular fission gas behavior. To consider the bubble drift due to the thermal gradient, those bubbles that exceed the critical bubble size are assumed to be left on the grain boundary and to migrate along the thermal gradient until they encounter free voidages. Use of this model in the KAFEPA code, which predicts the absolute magnitude and the trend of the gas release depending on power history, gives better agreement with the experimental data than the predictions of the model in the ELESIM code, which considers only a single bubble size at the grain boundary.