ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Woan Hwang, Ho Chun Suk, Won Mok Jae
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 314-324
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A34580
Articles are hosted by Taylor and Francis Online.
A comprehensive fission gas release model is developed by considering the behavior of multiple bubble sizes on the fuel grain boundary in terms of relevant physical parameters. This model takes into account bubble migration and coalescence; critical bubble size, which depends on the thermal gradient on the grain boundary; and the lenticular shape of the bubbles. Booth’s classical diffusion theory is directly adopted in the modeling of intragranular fission gas behavior. To consider the bubble drift due to the thermal gradient, those bubbles that exceed the critical bubble size are assumed to be left on the grain boundary and to migrate along the thermal gradient until they encounter free voidages. Use of this model in the KAFEPA code, which predicts the absolute magnitude and the trend of the gas release depending on power history, gives better agreement with the experimental data than the predictions of the model in the ELESIM code, which considers only a single bubble size at the grain boundary.