ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Woan Hwang, Ho Chun Suk, Won Mok Jae
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 314-324
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A34580
Articles are hosted by Taylor and Francis Online.
A comprehensive fission gas release model is developed by considering the behavior of multiple bubble sizes on the fuel grain boundary in terms of relevant physical parameters. This model takes into account bubble migration and coalescence; critical bubble size, which depends on the thermal gradient on the grain boundary; and the lenticular shape of the bubbles. Booth’s classical diffusion theory is directly adopted in the modeling of intragranular fission gas behavior. To consider the bubble drift due to the thermal gradient, those bubbles that exceed the critical bubble size are assumed to be left on the grain boundary and to migrate along the thermal gradient until they encounter free voidages. Use of this model in the KAFEPA code, which predicts the absolute magnitude and the trend of the gas release depending on power history, gives better agreement with the experimental data than the predictions of the model in the ELESIM code, which considers only a single bubble size at the grain boundary.