ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Everett L. Redmond II, John M. Ryskamp
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 272-286
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34577
Articles are hosted by Taylor and Francis Online.
Three-dimensional continuous-energy coupled neutron-gamma Monte Carlo models of the Advanced Neutron Source (ANS) final preconceptual and conceptual reference core designs have been developed using the Monte Carlo Neutron and Photon transport code (MCNP) Version 3b. These models contain the reactor core with control rods, the heavy water reflector tank with shutdown rods and some beam tubes, and the outer light water pool. Eighty homogenized fuel zones per fuel element are used to represent the radial and axial 235U fuel distribution. These models are the most sophisticated, physically accurate reactor physics models of the ANS currently available. The use of MCNP methods and applications to the ANS are demonstrated. Beam tube studies, coolant voiding studies, and many criticality studies have already been performed, as have studies with variance reduction techniques. In comparison with deterministic methods, MCNP proves superior in calculating the core multiplication factor and neutron fluxes in the reflector. The MCNP code offers the ANS project the capability of performing complicated reactor physics calculations not currently possible with most deterministic methods.