ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mohamed Belhadj, Tunc Aldemir, Richard N. Christensen
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 95-102
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A34571
Articles are hosted by Taylor and Francis Online.
Plate-type research reactor cores have involute or rectangular coolant channels with channel gap size in the range 2 ≤ d ≤ 5 mm. Heat transfer under fully developed nucleate boiling (FDNB) and low-velocity (<0.15 m/s) upward flow conditions is important in accident situations where core cooling may be by natural convection. Using data from previous experimental work with 2 ≤ d ≤ 4 mm rectangular channels, it is shown that (a) wall superheat (ΔTsat) in thin channels under FDNB decreases with increasing probability of bubble contact, (b) ΔTsat is a function of the bubble departure diameter Db as well as d, and (c) ΔTsat can be significantly overestimated by the FDNB correlations that are conventionally used in plate-type research reactor analysis but that are based on higher pressure and larger d flow data and that predict ΔTsat as a function of local channel heat flux and pressure only (e.g., as in the Jens-Lottes and Thom correlations). A new FDNB correlation is proposed that represents the bubble contact mechanism through the dimensionless number (d — cDb)/d, where c is a fitting parameter that accounts for the statistical aspects of bubble formation and contact. The ΔTsat predictions of the new correlation agree with the experimental data to within 16% and approach those obtained from the Jens-Lottes correlation with decreasing Db/d.