ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Fu-Long Chen, Shih-Hai Li, Ge-Ping Yu
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 54-63
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34567
Articles are hosted by Taylor and Francis Online.
For the final disposal of high-level waste (HLW), the possibility of a repository sited below the fresh/saline groundwater interface within islet rock formations is analyzed. Because of their relatively stable tectonics, the offshore islets of some countries (such as those of Taiwan) are worthy. of being considered as potential repository sites. Before the emplacement of radwastes in such a repository, however, the mass exchange across the fresh/saline groundwater interface must be limited and the horizontal movement of advective saline ground-water must be extremely low. Theoretical equations for the location and shape of the interface are derived. When radwastes are buried in rock formations, the temperature effect of the decay heat could cause buoyant convection flow of saline groundwater upward across the groundwater interface. This could carry released radionuclides across the groundwater interface to upper formation layers where fresh groundwater flows. The radionuclides could then be carried by the fresh groundwater to the sea. Although basic HLW repository designs should eliminate the significance of this temperature effect, it is incorporated into this preliminary analysis for the purpose of conservative estimations. Radionuclide transport behavior in an islet site is compared to that in an inland site in which a repository would be built in partially saturated fractured media. The total effects of radionuclide transport for the islet site is similar to that for the inland site. Although the lack of information limits more detailed, quantitative predictions, the possibility of islet disposal sites for HLW is worthy of notice, and more research efforts toward investigation of islet sites are warranted.