ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Fu-Long Chen, Shih-Hai Li, Ge-Ping Yu
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 54-63
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34567
Articles are hosted by Taylor and Francis Online.
For the final disposal of high-level waste (HLW), the possibility of a repository sited below the fresh/saline groundwater interface within islet rock formations is analyzed. Because of their relatively stable tectonics, the offshore islets of some countries (such as those of Taiwan) are worthy. of being considered as potential repository sites. Before the emplacement of radwastes in such a repository, however, the mass exchange across the fresh/saline groundwater interface must be limited and the horizontal movement of advective saline ground-water must be extremely low. Theoretical equations for the location and shape of the interface are derived. When radwastes are buried in rock formations, the temperature effect of the decay heat could cause buoyant convection flow of saline groundwater upward across the groundwater interface. This could carry released radionuclides across the groundwater interface to upper formation layers where fresh groundwater flows. The radionuclides could then be carried by the fresh groundwater to the sea. Although basic HLW repository designs should eliminate the significance of this temperature effect, it is incorporated into this preliminary analysis for the purpose of conservative estimations. Radionuclide transport behavior in an islet site is compared to that in an inland site in which a repository would be built in partially saturated fractured media. The total effects of radionuclide transport for the islet site is similar to that for the inland site. Although the lack of information limits more detailed, quantitative predictions, the possibility of islet disposal sites for HLW is worthy of notice, and more research efforts toward investigation of islet sites are warranted.