ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Y. Bruce Katayama, Langdon K. Holton, Jr., Galen N. Buck, James F. Hutchens, Mark S. Culverhouse
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 44-53
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34566
Articles are hosted by Taylor and Francis Online.
A highly contaminated cell in the Pacific Northwest Laboratory’s (PNL) 324 Building Radiochemical Engineering Facilities was recently decontaminated using a series of remote and contact techniques. The approach used in decontaminating the cell was very successful: It resulted in an 87% lower radiation dose to workers and a cost saving of 39% compared with a hands-on procedure used in another cell 2 yr earlier. Eight cycles of remote decontamination, combining use of an alkaline cleaner foam spray and pressurized water rinse, preceded manned entry. Initial radiation readings in cell C, averaging 50 rad/h, were first reduced to <200 mrad/h using remote techniques. Contact decontamination was then permissible using ultrahigh-pressure water at 270 MPa, further reducing the average radiation level in the cell to <86 mrem/h. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 17.8 mrem/m2 and $1033/m2 of cell surface area. This work is part of a larger effort sponsored by the U.S. Department of Energy’s Surplus Facilities Management Program to clean out six radioactive cells and to dismantle PNL’s pilot-scale radioactive liquidfed ceramic melter. In this program, numerous other advanced techniques are being developed and are proving valuable, particularly in lowering radiation doses.