ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
David J. Kropaczek, Paul J. Turinsky
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 9-32
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT95-1-9
Articles are hosted by Taylor and Francis Online.
An in-core nuclear fuel management code for pressurized water reactor reload design has been developed that combines the stochastic optimization technique of simulated annealing with a computationally efficient core physics model based on second-order accurate generalized perturbation theory. The approach identifies the placements of feed fuel, exposed fuel with assembly orientations, and burnable poisons within the core lattice that optimize fuel cycle performance or thermal margin according to one of the following objectives: maximization of keff at a target end-of-cycle (EOC) burnup, minimization of the maximum radial power peaking over the cycle, or maximization of region average discharge burnup, and subject to constraints on radial power peaking, discharge burnup, and moderator temperature coefficient. Each objective examined for a typical cycle 2 reload indicated the existence of multiple optimal solutions. A comparison of the loading patterns obtained for the same fuel inventory shows that the marginal cost associated with achieving a 6.1% reduction in the maximum radial power peaking is equivalent to a 15.0% increase in fuel cycle costs for the specific core analyzed. Alternatively, an optimum loading pattern was found that increased the region average discharge burnup by 11.4% more than the one that maximizes the EOC keff, with the added expense of an increase in feed enrichment required to offset an otherwise 11.2% decrease in cycle length.