ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Akio Yamamoto
Nuclear Technology | Volume 145 | Number 1 | January 2004 | Pages 11-17
Technical Paper | Fission Reactors | doi.org/10.13182/NT145-11
Articles are hosted by Taylor and Francis Online.
A new solution for the control rod cusping problem in the three-dimensional pin-by-pin core calculation is proposed in this paper. The current advanced nodal code resolves this issue by estimating the one-dimensional axial flux distribution in a partially rodded node. However, direct application of this approach to the three-dimensional pin-by-pin calculation is impractical since the leakage effect in the radial direction is significant and the one-dimensional model for axial flux distribution is no longer valid. This issue has been neither addressed nor resolved yet. In this paper, a new approach that utilizes the inverse of the spectral index obtained in the assembly calculation is used to estimate the flux distribution inside the partially rodded mesh. The proposed model was implemented in the SCOPE2 code, which is a three-dimensional pin-by-pin nodal-transport code for pressurized water reactor core calculations, and a verification calculation was carried out to confirm the validity of the proposed method. From the calculation results, oscillation in the differential worth of control rods (i.e., the cusping effect) is damped, and the proposed model can almost reproduce that obtained by the reference calculation. The additional computation time for the proposed model is negligible. Consequently, the proposed control rod cusping model is an attractive method in three-dimensional pin-by-pin calculations.