ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
S. Murakami, M. Mizuno
Nuclear Technology | Volume 95 | Number 2 | August 1991 | Pages 219-227
Technical Paper | Material | doi.org/10.13182/NT91-A34558
Articles are hosted by Taylor and Francis Online.
The constitutive equations for creep, swelling, and damage under irradiation are discussed in terms of incorporating the transient behavior of swelling after the incubation fluence as well as the effect of transient creep. Creep during irradiation is assumed to consist of irradiation-induced creep and irradiation-affected thermal creep, and the dilatational part of irradiation-induced creep is identified with swelling. The irradiation-induced creep is formulated by postulating the stress-induced preferential absorption mechanism. Then, the continuous transition of swelling after the incubation fluence is formulated using the curvature parameter of Bates and Korenko. For transient creep, on the other hand, the McVetty creep law and the Kachanov-Rabotnov creep damage theory are modified to describe irradiation-affected thermal creep. The resulting equations are applied to predict creep before, during, and after irradiation of 20% cold-worked Type 316 stainless steel at elevated temperatures, and the validity of the equations is discussed by comparison with experiments. Finally, the bulging and rupture process in fast breeder reactor fuel cladding is analyzed using the equations.