ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Klaus L. Nissen
Nuclear Technology | Volume 95 | Number 2 | August 1991 | Pages 175-192
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A34555
Articles are hosted by Taylor and Francis Online.
Fuel rod computer models are utilized to predict cladding tube integrity under normal operating or transient accident conditions in a nuclear fission reactor. The METHOD2D computer code, which includes a fuel rod mechanics model based on an axisymmetric finite element formulation, is developed and verified. This two-dimensional approach gives results for the axial and radial deformation of the fuel pellets and the cladding tube for the whole fuel rod. Because an algorithm for fuel pellet/cladding tube radial contact and axial friction is incorporated, the analysis of closed fuel/cladding gap situations is possible. Calculation results for a whole fuel rod are compared with a transient CABRI experiment that led to partial fuel melting but not to cladding failure.