ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
John R. White, Thomas F. DeLorey
Nuclear Technology | Volume 95 | Number 2 | August 1991 | Pages 129-147
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34551
Articles are hosted by Taylor and Francis Online.
A detailed sensitivity and uncertainty analysis is performed for several parameters of interest in the design of the high-conversion reactor (HCR) concept. The main goals of this work are to determine the response standard deviation due to basic nuclear data uncertainties and to incorporate integral experiment information from the PROTEUS facility to reduce the computed uncertainties, where possible. The results for reactivity and five important reaction rate ratios (at the 0% void state) that are part of the measurement program in the PROTEUS phase II experiments are highlighted. In addition, the void coefficient at both low void and high void is studied. The computed correlation coefficients between the PROTEUS and HCR models are uniformly high for all responses. This indicates that a reduction in uncertainty can be achieved within the measurement uncertainty and that the PROTEUS experiments were ideal for the physics characterization of HCR responses.