ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Jungsook Clara Wren, Chris J. Moore
Nuclear Technology | Volume 94 | Number 2 | May 1991 | Pages 242-251
Technical Paper | Advances in Reactor Accident Consequence Assessment / Material | doi.org/10.13182/NT91-A34545
Articles are hosted by Taylor and Francis Online.
Triethylenediamine (TEDA) impregnated charcoals, used in nuclear reactors to safeguard against the release of airborne radioiodine, show high efficiency under various reactor operation and accident conditions when they are new. However, during normal operation, charcoal filters are continuously degraded (or weathered) due to the adsorption of moisture and other air contaminants. The effect of weathering on the efficiency of charcoal for removing radioiodine is of great interest. The results of a study on the adsorption behavior of various contaminants {NO2, SO2, 2-butanone [methyl-ethyl ketone (MEK)], and NH3} on TEDA charcoal are presented. This study is an attempt to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The adsorption and desorption of characteristics of these contaminants range from completely irreversible (NO2) to completely reversible (NH3). The effect of adsorbed water (or humidity) on adsorption is different for each contaminant. Adsorbed water increases the adsorption rate and capacity of TEDA charcoal for NO2, while it does not significantly change those for SO2. However, it appears that SO2 is adsorbed as H2SO4 on the wet charcoal. Adsorbed water slightly reduces the adsorption capacity of the charcoal for MEK, but does not affect the adsorption of NH3.