ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jungsook Clara Wren, Chris J. Moore
Nuclear Technology | Volume 94 | Number 2 | May 1991 | Pages 242-251
Technical Paper | Advances in Reactor Accident Consequence Assessment / Material | doi.org/10.13182/NT91-A34545
Articles are hosted by Taylor and Francis Online.
Triethylenediamine (TEDA) impregnated charcoals, used in nuclear reactors to safeguard against the release of airborne radioiodine, show high efficiency under various reactor operation and accident conditions when they are new. However, during normal operation, charcoal filters are continuously degraded (or weathered) due to the adsorption of moisture and other air contaminants. The effect of weathering on the efficiency of charcoal for removing radioiodine is of great interest. The results of a study on the adsorption behavior of various contaminants {NO2, SO2, 2-butanone [methyl-ethyl ketone (MEK)], and NH3} on TEDA charcoal are presented. This study is an attempt to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The adsorption and desorption of characteristics of these contaminants range from completely irreversible (NO2) to completely reversible (NH3). The effect of adsorbed water (or humidity) on adsorption is different for each contaminant. Adsorbed water increases the adsorption rate and capacity of TEDA charcoal for NO2, while it does not significantly change those for SO2. However, it appears that SO2 is adsorbed as H2SO4 on the wet charcoal. Adsorbed water slightly reduces the adsorption capacity of the charcoal for MEK, but does not affect the adsorption of NH3.