ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Constantinos Syros,* Claudio Ronchi, Cinzia Spanó
Nuclear Technology | Volume 94 | Number 2 | May 1991 | Pages 213-227
Technical Paper | Advances in Reactor Accident Consequence Assessment / Nuclear Reactor Safety | doi.org/10.13182/NT91-A34543
Articles are hosted by Taylor and Francis Online.
A semianalytical nonlinear model is described for the calculation of the burst release and release rate of volatile fission product (VFP) from a fuel pellet under steady-state and transient reactor conditions as well as the radial density distribution in the open porosity. The density of the VFP in the porosity channels is assumed to be c(r, t) = φ(r)exp[—LT(r)ω(t)] + Λ-1(t), where L is an analytical function of parameters characterizing the physics and the geometry of the pellet; φ(r) rigorously satisfies the required boundary conditions; and ω(t), the solution of a highly nonlinear differential equation, is a time function (“kinetic time”) that represents the evolution of the density profile. The constant Λ is suitably calculated with the zeroes of the Bessel function Jo(x). The density c(r, t) of the VFP in the open porosity of the pellet is used to find the pressure p(r, t) in the open pores. The integration procedure of the transport equation for different initial and boundary conditions is described. Calculation experiments are presented and discussed.