ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Simon C. P. Wang, Clayton Collins, Samim Anghaie, E. Dow Whitney
Nuclear Technology | Volume 93 | Number 3 | March 1991 | Pages 399-411
Technical Paper | Material | doi.org/10.13182/NT91-A34534
Articles are hosted by Taylor and Francis Online.
Uranium fluoride gases are proposed as primary candidate fuels for ultrahigh-temperature gas core or vapor core reactor systems for a variety of space power applications. In these systems, the peak temperature of the fissioning gas can be as high as 5000 K and the inner wall temperature of the reactor cavity is within the range of 1000 to 2000 K. Two kinds of alumina, sapphire and polycrystal alpha alumina, and CaO partially stabilized zirconia are exposed to uranium hexafluoride gas in temperatures ranging from 973 to 1473 K and from 873 to 1073 K, respectively. Exposure tests are conducted in a UF6 flowing loop with an alumina reaction tube housed in a 1500 K electric-heated furnace.The reaction rates are measured using a discontinuous gravimetric method. The morphology of the exposed surfaces was observed by optical microscopy and scanning electron microscopy, and the reaction products were identified by X-ray diffraction and energy dispersive X-ray spectroscopy. Results indicate that alumina provides a relatively higher service temperature in UF6 environment. However, due to the highly reactive and chemically aggressive nature of UF6 at high temperatures, the maximum service temperature of alumina for a UF6-based gas core reactor is limited to 1273 K. Zirconia at temperatures above 973 K is not compatible with UF6.