ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
John M. Ryskamp, Douglas L. Selby, R. Trenton Primm III
Nuclear Technology | Volume 93 | Number 3 | March 1991 | Pages 330-349
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34527
Articles are hosted by Taylor and Francis Online.
The ongoing preconceptual and conceptual reactor design of the Advanced Neutron Source (ANS) is explored. The ANS is being designed for materials sciences, isotope production, and fundamental physics research. A reactor design based on previously developed technology can meet the performance requirements set by the user community for a new ANS to serve all fields of neutron science. These requirements include the capability of producing a peak thermal neutron flux over five times higher than that in use at any currently operating steady-state facility. Achievement of these ultrahigh flux levels involves many interesting aspects of reactor design. The reactor characteristics of the current preconceptual reference design are presented. The attainment of this design was reached by following a design strategy that best met the safety and user requirements. The design has evolved over the last 5 yr from two concepts proposed in 1985. The trade-offs and selection of many reactor parameters are described to illustrate how and why the current design was achieved. Further reactor design is planned, leading to an ANS operating by 1999 for use by scientists of many disciplines.