ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Toru Hiraoka, Kiyoshi Sako, Hideki Takano, Takeshi Ishii, Mitsuru Sato
Nuclear Technology | Volume 93 | Number 3 | March 1991 | Pages 305-329
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34526
Articles are hosted by Taylor and Francis Online.
A high-breeding fast reactor with fission product gas purge/tube-in-shell metallic fuel assemblies is proposed. Its reactor doubling time is <10 yr because fast reactors must have economical fuel breeding as well as economical electricity generation. The core has a high volume fraction of fuel (>50%) and realizes a very hard neutron spectrum. Thus, a fast-breeding 670-MW(electric) reactor with a high breeding ratio (1.84) and a short reactor doubling time (6.7 yr) is proposed. The structure of the fuel assembly, its fabrication, and the fission product gas purging mechanism are assessed and the new fuel assembly concept is determined to be feasible. Purging of the fission product gas does not affect the shielding requirement and can be managed by a small-scale cover gas treatment system because of the good fission product retention characteristics of the sodium in the fuel assemblies. The entire reactor configuration, including the intermediate heat exchangers, was assessed utilizing conventional reactor components.