ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ronald E. Engel, John M. Sorensen, Randall S. May, Kenneth J. DOran, N. G. Trikouros, Eugene S. Mozias
Nuclear Technology | Volume 93 | Number 1 | January 1991 | Pages 65-81
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT91-A34519
Articles are hosted by Taylor and Francis Online.
The Electric Power Research Institute (EPRI) and GPU Nuclear Corporation have completed a demonstration project that provides justification for relaxing the high-pressure setpoints for the Oyster Creek Nuclear Generating Station. The project was undertaken because an undesirable overlap had been identified in the high-pressure setpoints when accounting for measurement uncertainties experienced during plant operation. The project employed a statistical combination of uncertainties (SCU) process to provide increased margin for measurement uncertainties. This approach was used because previous experience indicated that there was insufficient margin to justify the desired setpoints using conventional deterministic inputs to the safety analysis and plant performance analysis processes. Through the use of SCU methodology and other deterministic analyses, it is possible to provide comprehensive bases for the desired technical specification changes to the high-pressure setpoints. The SCU process is based on the EPRI setpoint analysis guidelines, and it requires the development of response surfaces to simulate RETRAN peak pressure calculations for the limiting transient events. The use of response surfaces adds an intermediate step to the SCU process, but reduces the number of RETRAN cases required to make appropriate statistical statements about the result probabilities. Basically, each response surface is an approximation of the RETRAN code for one particular event and one output variable of interest, which is valid over a limited region. The response surfaces can be sampled very inexpensively using simple Monte Carlo methods. The basic input to the development of a response surface is a set of results obtained from specific RETRAN cases. Each case includes a particular set of parameters consistent with an experimental design selected to ensure that all of the parameter dependencies are carefully considered and that the response surface fit has a reasonably small fitting error. The parameters selected for incorporation into the response surface are identified through a screening process that uses RETRAN analyses to establish the sensitivity of the event results to the parameter uncertainty. The parameter screening process, the selection of the experimental design, and the development of the response surfaces are described, and the analysis results are provided.