The reactor coolant system (RCS) water level is reduced during each refueling at some plants. Decreasing the level below the top of the loop piping (midloop operation) may be necessary to work on unisolable RCS loop components. A loss of residual heat removal (RHR) under these conditions can be serious due to the reduced water inventory, air in the RCS, and openings in the RCS loops. Under certain conditions, a loss of RHR could lead to rapid core uncovery and potential fuel damage. Core boiling due to a loss of RHR during midloop operation has received little attention until recently. The transient involves complex phenomena induced by core boiling, such as inventory loss from RCS openings and differences between the downcomer and upper plenum water levels, with the reactor vessel acting like a manometer. These phenomena cannot be easily evaluated without a versatile thermal-hydraulic computer code such as RETRAN. Yankee Atomic Electric Company’s RETRAN analysis of these phenomena reveals that the time to core uncovery is shortened by the loss of coolant through RCS openings and the manometer behavior of the reactor vessel water level. This analysis points out some limitations in applying the RETRAN code to this transient. However, the results are confirmed by a Westinghouse report issued after the completion of this analysis.