ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Steven T. Polkinghorne, Thomas K. Larson, Brent J. Buescher
Nuclear Technology | Volume 93 | Number 2 | February 1991 | Pages 240-251
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A34508
Articles are hosted by Taylor and Francis Online.
The RELAP5 computer code is used to simulate four small-scale loss-of-coolant accident (LOCA) experiments conducted at Idaho National Engineering Laboratory (INEL). The purpose of the study is to help assess RELAP5 under conditions similar to those expected during a large-break LOCA at INEL’s Advanced Test Reactor (ATR). During an ATR large-break LOCA, it is expected that the primary system pressure will rapidly decrease from the initial operating pressure (∼2.55 MPa) to subatmospheric conditions governed by the primary coolant temperature. Flashing will occur in the high points of the system and air ingress from the break is possible. The RELAP5 code had not previously been assessed under these conditions. The results show that RELAP5 accurately predicted pressures, water levels, and air ingress behavior, thus providing confidence in the ability of the code to simulate an ATR large-break LOCA.