ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ali E. Dabiri, William K. Hagan, Donald A. Swenson, Kenneth A. Krohn
Nuclear Technology | Volume 92 | Number 1 | October 1990 | Pages 127-133
Technical Paper | Development of Nuclear Gas Cleaning and Filtering Techniques / Radioisotopes and Isotope Separation | doi.org/10.13182/NT90-A34492
Articles are hosted by Taylor and Francis Online.
The feasibility of using a radio-frequency quadrupole (RFQ) accelerator to accelerate 3He++for use in positron emission tomography (PET) is shown. The 3He++ RFQ is extremely lightweight in comparison to a cyclotron, but can nevertheless produce all four radioisotopes of interest (18F, 13N, 15O, and 11C) in more than adequate quantities. Due to the neutron-poor nature of 3He++, the desired positron emitters can be produced from naturally abundant target isotopes. In addition, target reactions and collisions with the accelerating structure produce relatively small numbers of neutrons compared to proton and deuteron systems. This yields two economic advantages. Enriched 13C, 15N, and 18O target materials are not required. Also, the shielding requirements are reduced considerably, and there is no need for radiation shielding around the accelerator. This reduced shielding results in a factor of 8 reduction in total facility shielding weight compared to a proton/deuteron cyclotron facility. The order of magnitude reduction in facility weight, the virtual elimination of the accelerator weight, and the relative lack of residual induced activity gives rise to the possibility of a radiopharmaceutical production system that is less expensive than present systems and may ultimately be transportable. Such a system could make PET imaging technology far more accessible geographically and financially than it is at present.