ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Craig I. Ricketts, Volker Rüdinger, Jürgen G. Wilhelm
Nuclear Technology | Volume 92 | Number 1 | October 1990 | Pages 50-65
Technical Paper | Development of Nuclear Gas Cleaning and Filtering Techniques / Nuclear Safety | doi.org/10.13182/NT90-A34486
Articles are hosted by Taylor and Francis Online.
A loss-of-coolant accident or fire suppression with water sprays would release moisture into the air within the containment building of a nuclear reactor. The resulting high air humidity can unfavorably affect the performance of the high-efficiency particulate air (HEPA) filters in the air cleaning systems. One phenomenon that can lead to filter failure or air cleaning system malfunction is the increase in filter pressure drop resulting from supersaturated airflow. To evaluate the performance and reliability of filters exposed to fog, the airstream and filter parameters that influence pressure drop are studied in tests of clean and dust-loaded HEPA filter units. A discontinuous gravimetric method employing full-size sampling filters is used to determine the average liquid water content of the airstream with an uncertainty of ≤10%. The dust loading of filters used in routine service and the liquid moisture content of the air most adversely affect the rate and extent of the pressure drop increase. The susceptibility of clean filters to such increases can be reduced by changes in parameters that enhance the drainage of water from the filter medium. However, the predominance of the adverse influence of dust loading appears to counteract the effectiveness of the improvements studied. It is also shown that relatively simple models can be used to predict the rise in pressure drop of clean filter units with increasing exposure time under fog conditions.