ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Jie Liu, Seiichi Koshizuka, Yoshiaki Oka
Nuclear Technology | Volume 144 | Number 3 | December 2003 | Pages 324-336
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT03-A3448
Articles are hosted by Taylor and Francis Online.
A computer code PROVER-II is developed for the propagation phase of a sodium vapor explosion. A new thermal fragmentation model is proposed that includes three kinds of timescales for modeling the instant fragmentation, spontaneous nucleation fragmentation, and normal boiling fragmentation. The pressure wave propagation in a sodium vapor explosion is analyzed and compared with that in a steam explosion. The energy conversion ratio of an in-vessel sodium vapor explosion is calculated by using hydrodynamic and thermal fragmentation mechanisms, and sensitivity analyses are carried out for some parameters. The initial thermal conditions for energetic fuel-coolant interactions in a sodium system are examined. Results show that the high saturation temperature of sodium results in a much lower pressure peak in a sodium vapor explosion compared to a steam explosion, and the mechanical energy release is limited by the mass of melt participating in the explosion during the core disruptive accident in liquid-metal-cooled fast breeder reactors.