ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
John C. Statharas, John G. Bartzis, Demosthenes D. Papailiou
Nuclear Technology | Volume 92 | Number 2 | November 1990 | Pages 248-259
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT90-A34476
Articles are hosted by Taylor and Francis Online.
An improved version of the computer code THEAP-2, suitable for calculation of low flows (G < 50 kg/m2·s−1), is developed. The original code failed to provide reasonable agreement with existing experimental data. The discrepancies were attributed mainly to the drift-flux model, the dispersed flow transition criterion, and the correlations for estimating critical heat flux and minimum film boiling temperatures employed in the original code. The Electric Power Research Institute drift-flux model was used to correct these shortcomings and a new dispersed flow transition criterion was proposed. A review and an assessment of the available correlations of the temperatures resulted in the development of revised versions of these correlations. The changes improved the code’s ability to predict quantities such as the wall and vapor temperatures, the actual quality, and the vapor generation rate. The improvements can be attributed to the transition criterion introduced in the revised code.