ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
John C. Statharas, John G. Bartzis, Demosthenes D. Papailiou
Nuclear Technology | Volume 92 | Number 2 | November 1990 | Pages 248-259
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT90-A34476
Articles are hosted by Taylor and Francis Online.
An improved version of the computer code THEAP-2, suitable for calculation of low flows (G < 50 kg/m2·s−1), is developed. The original code failed to provide reasonable agreement with existing experimental data. The discrepancies were attributed mainly to the drift-flux model, the dispersed flow transition criterion, and the correlations for estimating critical heat flux and minimum film boiling temperatures employed in the original code. The Electric Power Research Institute drift-flux model was used to correct these shortcomings and a new dispersed flow transition criterion was proposed. A review and an assessment of the available correlations of the temperatures resulted in the development of revised versions of these correlations. The changes improved the code’s ability to predict quantities such as the wall and vapor temperatures, the actual quality, and the vapor generation rate. The improvements can be attributed to the transition criterion introduced in the revised code.