ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Michael D. Allen, Harlan W. Stockman, Kenneth O. Reil, Arthur J. Grimley
Nuclear Technology | Volume 92 | Number 2 | November 1990 | Pages 214-228
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT90-A34472
Articles are hosted by Taylor and Francis Online.
High-burnup uranium dioxide reactor fuel was heated in-pile at ∼2490 K in a reducing atmosphere (33% H2 in argon) for 16 min. Fission product aerosols and vapors released from the fuel were collected on a series of sequentially opened filters; the fractions of the original fuel inventory collected on the filters were f Cs = 0.56, f I = 0.38, f Ba = 0.078, f Sr = 0.053, f Eu = 0.064, and f Te < 0.002. The measured release rates for nonvolatile fission products were much higher than predicted by existing release codes, whereas tellurium release was much lower. Posttest examination of the fuel indicates extensive fuel/clad interaction, fuel swelling, and infiltration of the fuel by a zirconium-rich metallic melt; this melt kept oxygen potentials in the fuel very low. The low oxygen potentials and fuel disruption may account for the discrepancy between release codes and the test release results.