ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Robert E. Kurth, David C. Cox
Nuclear Technology | Volume 92 | Number 2 | November 1990 | Pages 186-193
Technical Paper | Nuclear Safety | doi.org/10.13182/NT90-A34469
Articles are hosted by Taylor and Francis Online.
Discrete probability methods have several advantages that should be retained in constructing a probabilistic model. First, most engineering data are in a discrete form, and thus a discrete probability method is a natural choice for incorporating such data in an analysis. Second, the discrete probability methods are invariant; i.e., regardless of the weighting scheme used for the input variable distributions, no new coding is required to implement these schemes. Other weighting methods, for example, Monte Carlo importance sampling, can require significant re-coding before lowprobability results can be estimated. The most significant drawback to discrete probability methods is that their application is limited. These discrete methods require many calculations and a large amount of computer storage space. The number of storage spaces equals the number of discrete points ND raised to the power of the number of variables Nv. Thus, for ten discrete and nine input variables, the response variable is characterized by 1 billion data points! While some computers may have sufficient storage space to handle this number of data points, statistically these data points are not all significant. A new method for random sampling from the discrete probability space and condensing after performing a statistically significant number of calculations is described. The accuracy of a Monte Carlo calculation can be approximated, while importance sampling can be directed without any recoding of the computer algorithm.