ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. X. Bruce Qu, Thomas E. Blue, C. K. Chris Wang, Reinhard A. Gahbauer
Nuclear Technology | Volume 91 | Number 3 | September 1990 | Pages 404-412
Technical Paper | Radioisotopes and Isotope Separation | doi.org/10.13182/NT90-A34461
Articles are hosted by Taylor and Francis Online.
Previously, a neutronic study of an accelerator-based epithermal neutron irradiation facility (AENIF) for boron neutron capture therapy (BNCT) was performed using three-dimensional Monte Carlo transport calculations. The major components of the AENIF are a radio-frequency quadrupole proton accelerator, a 7Li target, and a moderator assembly. Neutrons are generated by bombarding the 7Li target with 2.5-MeV protons. The neutrons emerging from the 7Li target are too energetic to be used for BNCT and are moderated as they traverse the moderator assembly to the patient. The design of a moderator assembly for an AENIF for the treatment of glioblastoma is reviewed, and this design is compared with the design of a moderator as sembly for an accelerator thermal neutron irradiation facility (A TNIF) for the treatment of superficial melanoma. The ATNIF moderator assembly consists of a 50-cm-high × 30-cm-diam cylinder of D2O, surrounded on its top and sides by a 40-cm-thick graphite reflector. This moderator assembly creates, at the surface of a large phantom at its irradiation port, a boron absorbed dose rate of (3.2 ± 0.2) cGy/(min · mA), for a tumor 10B concentration of 24 µg of10B per gram of tissue. For a single-session dose equivalent of 40 Sv to the tumor, the treatment time is 13 min for a 30-mA proton beam. With different moderator assemblies, a 30-mA, 2.5-MeV proton accelerator can be used to treat both superficial and deep lesions from melanomas and gliomas.