ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
T. X. Bruce Qu, Thomas E. Blue, C. K. Chris Wang, Reinhard A. Gahbauer
Nuclear Technology | Volume 91 | Number 3 | September 1990 | Pages 404-412
Technical Paper | Radioisotopes and Isotope Separation | doi.org/10.13182/NT90-A34461
Articles are hosted by Taylor and Francis Online.
Previously, a neutronic study of an accelerator-based epithermal neutron irradiation facility (AENIF) for boron neutron capture therapy (BNCT) was performed using three-dimensional Monte Carlo transport calculations. The major components of the AENIF are a radio-frequency quadrupole proton accelerator, a 7Li target, and a moderator assembly. Neutrons are generated by bombarding the 7Li target with 2.5-MeV protons. The neutrons emerging from the 7Li target are too energetic to be used for BNCT and are moderated as they traverse the moderator assembly to the patient. The design of a moderator assembly for an AENIF for the treatment of glioblastoma is reviewed, and this design is compared with the design of a moderator as sembly for an accelerator thermal neutron irradiation facility (A TNIF) for the treatment of superficial melanoma. The ATNIF moderator assembly consists of a 50-cm-high × 30-cm-diam cylinder of D2O, surrounded on its top and sides by a 40-cm-thick graphite reflector. This moderator assembly creates, at the surface of a large phantom at its irradiation port, a boron absorbed dose rate of (3.2 ± 0.2) cGy/(min · mA), for a tumor 10B concentration of 24 µg of10B per gram of tissue. For a single-session dose equivalent of 40 Sv to the tumor, the treatment time is 13 min for a 30-mA proton beam. With different moderator assemblies, a 30-mA, 2.5-MeV proton accelerator can be used to treat both superficial and deep lesions from melanomas and gliomas.